
BULETINUL ACADEMIEI DE ŞTIINŢE
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Orthogonality and retract orthogonality of operations

Iryna Fryz

Abstract. In this article, we study connections between orthogonality and retract
orthogonality of operations. We prove that if a tuple of operations is retractly or-
thogonal, then it is orthogonal. However, orthogonality of operations doesn’t provide
their retract orthogonality. Consequently, every k-tuple of orthogonal k-ary opera-
tions is prolongable to a k-tuple of orthogonal n-ary operations. Also, we give some
specifications for central quasigroups. In particular for central quasigroups over finite
field of prime order, retract orthogonality is the necessary and sufficient condition for
orthogonality. The problem of coincidence of orthogonality and retract orthogonality
remains open.

Mathematics subject classification: 20N05, 05B15.
Keywords and phrases: orthogonality of operations, retract orthogonality of oper-
ations, block-wise recursive algorithm, linear operation, central quasigroup.

Introduction

In quasigroup theory, the term “orthogonality” refers to several different notions
which are generalizations of orthogonality of binary operations. Here, we will follow
the definition of orthogonality of n-ary operations from [1]. For a description of
various notions of orthogonality, see also [2, 3] or [4] and the references therein.
Some algorithms for constructing orthogonal operations are described in [1,5–7] and
some relations with MDS-codes are given in [2–4,8].

The detailed review of the theory of orthogonal binary operations (n = 2) is
considered in [9]. But if n > 2, then many questions remain beyond attention, espe-
cially those which don’t have analogues in the binary case. One of these questions
is the orthogonality of retracts of operations.

In article [7], retract orthogonality concept was introduced as a tool of a block-
wise recursive algorithm for constructing orthogonal n-ary operations. That is why,
our purpose is to establish a connection between orthogonality and retract orthog-
onality.

In Section 2, we prove that if a tuple of operations is retractly orthogonal, then
it is orthogonal (Theorem 5). However, the inverse statement is not true (Propo-
sition 1). Consequently, Theorem 5 implies that every k-tuple of orthogonal k-ary
operations is prolongable to a k-tuple of orthogonal n-ary operations (Lemma 1)
and composition algorithm proposed in [7] constructs orthogonal operations which
are retractly orthogonal (Theorem 3). We give some specifications for retractly
orthogonal permutably reducible operations (Lemma 2 and Corollary 1).
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In Section 3, we give some specifications of the obtained results for linear op-
erations over an abelian group. In particular, Corollary 3 states that for central
quasigroups over finite field of prime order, retract orthogonality is the necessary
and sufficient condition for orthogonality. The problem of coincidence of orthogo-
nality and retract orthogonality remains open.

1 Preliminaries

Throughout the article all operations are defined on the same arbitrary fixed set
which is called carrier and is denoted by Q.

An operation f is called i-invertible if for arbitrary elements a1, . . . , ai−1, b,
ai−1, . . . , an there exists a unique element x such that

f(a1, . . . , ai−1, x, ai+1, . . . , an) = b. (1)

If f is i-invertible for all i ∈ 1, n := {1, . . . , n}, then it is called an invertible (a
quasigroup) operation.

For each invertible operation f , σ-parastrophe σf is defined by

σf(x1σ, . . . , xnσ) = x(n+1)σ :⇐⇒ f(x1, . . . , xn) = xn+1,

where σ is a permutation of the set 1, n + 1. In particular, a σ-parastrophe is called

• an i-th division if σ = (i, n + 1);

• principal if (n + 1)σ = n + 1.

It is clear that a principal σ-parastrophe can be defined by

σf(x1, . . . , xn) = f(x1σ−1 , . . . , xnσ−1). (2)

Definition (see [1]). A tuple of n-ary operations f1, . . . , fk (n > 2, k 6 n) defined
on Q (m := |Q|) is called orthogonal if for arbitrary b1, . . . , bk ∈ Q the system







f1(x1, . . . , xn) = b1,

. . . . . . . . . . . . . . . . . . .
fk(x1, . . . , xn) = bk

(3)

has exactly mn−k solutions. For n = k, the tuple f1, . . . , fk is called orthogonal if
the system (3) has a unique solution. For k > n, the tuple of operations is called
orthogonal if every its n-subtuple is orthogonal.

Note if k = 1, then orthogonality concept coincides with completeness of opera-
tion, i. e., an operation f1 is called complete if for all b1 ∈ Q the equation

f1(x1, . . . , xn) = b1

has mn−1 solutions.
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It is well known that an operation has an orthogonal mate if and only if it is
complete.

Theorem 1 (see [1]). A k-tuple (k < n) of orthogonal n-ary operations can be
embedded into an n-tuple of orthogonal n-ary operations.

Definition (see [1]). A t-tuple (t > k) of n-ary operations is called k-wise orthogonal
if every k-tuple of distinct n-ary operations from this tuple is orthogonal.

Theorem 2 (see [1]). If a t-tuple (t > k) of finite n-ary operations is k-wise or-
thogonal, then the tuple is ℓ-wise orthogonal for all ℓ such that 1 < ℓ 6 k.

Let f be an n-ary operation defined on a set Q and let

δ := {i1, . . . , ik} ⊆ 1, n, {j1, . . . , jn−k} := 1, n \δ, ā := (aj1, . . . , ajn−k
) ∈ Qn−k.

An operation f(ā,δ) which is defined by

f(ā,δ)(xi1 , . . . , xik) := f(y1, . . . , yn),

where

yi :=

{

xi if i ∈ δ,

ai if i 6∈ δ,

is called an (ā, δ)-retract or a δ-retract of f .
Operations f1;(ā1,δ), f2;(ā2,δ), . . . , fk;(āk,δ) are called similar δ-retracts of n-ary

operations f1, f2, . . . , fk if ā1 = ā2 = · · · = āk.

Definition (see [7]). Let δ ⊆ 1, n and |δ| = k. A k-tuple of n-ary operations is
called δ-retractly orthogonal, if all tuples of similar δ-retracts of these operations are
orthogonal.

If δ = {i}, then δ-retract orthogonality of operation f degenerates into its i-
invertibility. If δ = 1, n, then retract orthogonality of f1, . . . , fn is orthogonality.

The following algorithm constructs retractly orthogonal operations.

Composition algorithm [7]. Let δ ⊆ 1, n, n > k and let h1, . . . , hk be k-ary
operations, p1, . . . , pk be (n − k + 1)-ary operations, σ ∈ Sn.

Operations σf1, . . . , σfk are constructed by the following steps:

1) operations f1, . . . , fk are defined by











f1(x1, . . . , xn) := p1(h1(x1, . . . , xk), xk+1, . . . , xn),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fk(x1, . . . , xn) := pk(hk(x1, . . . , xk), xk+1, . . . , xn);

(4)

2) operations σf1, . . . , σfk are obtained from f1, . . . , fk using (2).

Let Sδ
n :=

{

σ ∈ Sn | (δ)σ = {1, . . . , |δ|}
}

.
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Theorem 3. Let p1, . . . , pk be 1-invertible (n − k + 1)-ary operations and h1, . . . ,
hk be k-ary orthogonal operations, σ−1 ∈ Sδ

n. Then operations σf1, . . . , σfn being
constructed by composition algorithm are δ-retractly orthogonal.

The symbol SA refers to the set of all permutations of the set A ⊂ 1, n.

π-block-wise recursive algorithm [7]. Let π := {π1, . . . , πk} be a partition
of 1, n and f1, . . . , fn be n-ary operations, τ1 ∈ Sπ1, τ2 ∈ Sπ1∪π2, . . . , τk−1 ∈
Sπ1∪···∪πk−1

.
Operations g1, . . . , gn are constructed by the following steps:

1) the first block of operations is

gj(x1, . . . , xn) := fj(x1, . . . , xn), j ∈ π1;

2) for every i = 2, . . . , k, the i-th block of operations is

gj(x1, . . . , xn) := fj(t1, . . . , tn), j ∈ πi,

where

ts :=

{

gsτi−1(x1, . . . , xn) if s ∈ π1 ∪ · · · ∪ πi−1,

xs otherwise.

A tuple of operations f1, . . . , fn is called π-block retractly orthogonal if for all
i ∈ 1, k a tuple {fj | j ∈ πi} is πi-retractly orthogonal.

Theorem 4 (see [7]). Let operations f1, . . . , fn be π-block retractly orthogonal.
Then the operations g1, . . . , gn constructed by π-block-wise recursive algorithm are
orthogonal.

2 Retract orthogonality and orthogonality

In this section, we establish some connections between orthogonality and retract
orthogonality.

In article [7], the authors give only the definition of δ-retract orthogonality for
the case when |δ| coincides with the number of operations in the tuple. Here we
consider other cases.

Definition 1. Let m := |Q|, δ ⊂ 1, n, |δ| = k and t ∈ 1, n be such that t < k < n. A
t-tuple of n-ary operations f1, . . . , ft on a set Q will be called δ-retractly orthogonal
if all similar δ-retracts of the operations are orthogonal, i.e., for an arbitrary sequence
ā ∈ Qn−k and arbitrary elements b1, . . . , bt ∈ Q, the system







f1;(ā,δ)(xi1 , . . . , xik) = b1,

. . . . . . . . . . . . . . . . . . . . . . . .
ft;(ā,δ)(xi1 , . . . , xik) = bt

has mk−t solutions.
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Definition 2. Let δ ⊂ 1, n, |δ| = k and s be an integer such that s > k. An s-tuple
of n-ary operations will be called δ-retractly orthogonal if each of its k-subtuples is
δ-retractly orthogonal.

Definition 3. Let δ ⊂ 1, n, |δ| = k and ℓ ∈ 1, n be such that ℓ < k. A k-tuple of n-
ary operations will be called ℓ-wise δ-retractly orthogonal if each of their ℓ-subtuples
is δ-retractly orthogonal.

Theorem 5. If for some δ ⊂ 1, n, a tuple of n-ary operations is δ-retractly orthog-
onal, then the tuple is orthogonal.

Proof. Suppose n-ary operations f1, . . . , fk are δ-retractly orthogonal. If |δ| =: k,
then consider a partition π = {δ, π2, . . . , πr} of the set 1, n, where π2,. . . , πr are
arbitrary pairwise disjoint subsets of the set 1, n\δ. By virtue of the π-block-wise
recursive algorithm, the operations f1, . . . , fk can be taken as the first block of
input operations. Then output operations are f1, . . . , fk, gk+1, . . . , gn, where
gk+1, . . . , gn are n-ary operations obtained by items 2) – r) of the algorithm from
blocks of arbitrary π2-,. . . , πr-retractly orthogonal operations. By Theorem 4, the
operations f1, . . . , fk, gk+1, . . . , gn are orthogonal, i.e., they are n-wise orthogonal.
By Theorem 2, they are also ℓ-wise orthogonal for all ℓ < n, consequently, for ℓ = k

as well. From this, the tuple f1, . . . , fk, gk+1, . . . , gn is k-wise orthogonal, i.e.,
each of its k-subtuples of operations is orthogonal, so the tuple f1, . . . , fk is also
orthogonal.

If |δ| =: t, where k < t < n, then by Theorem 1, every k-tuple of δ-retractly
orthogonal n-ary operations can be embedded in a t-tuple of δ-retractly orthogonal
n-ary operations. Therefore, there exists a (t−k)-tuple of n-ary operations fk+1, . . . ,
ft such that the t-tuple f1, . . . , fk, fk+1, . . . , ft is δ-retractly orthogonal. As we have
shown above, this tuple is orthogonal. Then by Theorem 2, each of its k-subtuples
is orthogonal.

Let |δ| = k and ℓ < k. By Theorem 5, retract orthogonality provides orthogonal-
ity, so ℓ-wise δ-retract orthogonality of a k-tuple of n-ary operations implies ℓ-wise
orthogonality of the tuple, and δ-retract orthogonality of n-tuple of n-ary operations
implies its k-wise orthogonality.

Let us show that the converse of Theorem 5 is not true.

Proposition 1. There exist k-tuples of orthogonal n-ary operations (k < n) such
that for some δ ⊂ 1, n, where |δ| = k, they are not δ-retractly orthogonal.

Proof. Suppose the orthogonality of a k-tuple of n-ary operations implies that for
all |δ| = k the tuple is δ-retractly orthogonal. i.e., orthogonality and δ-retract
orthogonality are the same. If k = 1, then orthogonality of an operation means its
completeness. On the other hand according to our assumption, for all i ∈ 1, n, the
operation is {i}-retractly orthogonal, i.e. it is i-invertible, for all i ∈ 1, n. From this,
a complete operation is a quasigroup operation, a contradiction.

Consider a counterexample for non-trivial case.
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Example 1. Let g, h, t and p be 4-ary operations:

g(x1, x2, x3, x4) = 2x1 − 4x2 + 2x3 + 5x4,

h(x1, x2, x3, x4) = 4x1 + 6x2 + x3 + 5x4,

t(x1, x2, x3, x4) = x1 − x2 + x3 + x4,

p(x1, x2, x3, x4) = −x1 + 2x2 − 7x3 + x4

on Z20. It is easy to verify that they are orthogonal, therefore by Theorem 2 oper-
ations g and h are orthogonal as well. However, they are not δ-retractly orthogonal
for each δ such that |δ| = 2, because all corresponding to them determinants are
not relatively prime to 20. Besides, all similar ternary retracts of g and h are not
orthogonal either. But orthogonal operations h and t are not {1, 2}-, {3, 4}-retractly
orthogonal and they are δ-retractly orthogonal for other possible cases.

Thus, we have shown that there exists a k-tuple of orthogonal n-ary operations
such that for all δ ⊂ 1, n, the tuple is not δ-retractly orthogonal.

A k-tuple of n-ary operations f1, . . . , fk (k < n) constructed by (4) will be
called prolongation of a k-tuple of orthogonal k-ary operations h1,. . . , hk to a k-
tuple of n-ary operations, where p1, . . . , pk are arbitrary 1-invertible (n− k +1)-ary
operations.

Lemma 1. Every k-tuple of orthogonal k-ary operations is prolongable to a k-tuple
of orthogonal n-ary operations.

Proof. By Theorem 3, every prolongation of a k-tuple of orthogonal k-ary opera-
tions is 1, k-retractly orthogonal and by Theorem 5 the prolongation is orthogonal.
Since there exists a k-tuple of 1-invertible (n − k + 1)-ary operations, every k-tuple
of orthogonal k-ary operations can be prolonged to a k-tuple of orthogonal n-ary
operations.

Remark 1. Let p1, . . . , pk be arbitrary 1-invertible (n−k+1)-ary operations, h1, . . . ,
hk be arbitrary k-ary operations. According to Theorem 3 and Theorem 5,

1) operations f1,. . . , fk constructed by (4) are orthogonal, besides they are 1, k-
retractly orthogonal if and only if h1, . . . , hk are orthogonal;

2) operations σf1, . . . , σfk being constructed by composition algorithm are δ-
retractly orthogonal and they are orthogonal.

Remark 2. If we put bijective mappings α1, . . . , αk of Q onto Q instead of p1, . . . ,
pk in (4) respectively, the well-known statement follows: operations α1h1, . . . , αkhk

are orthogonal if and only if h1, . . . , hk are orthogonal.
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Retract orthogonality of permutably reducible operations. An n-ary op-
eration f will be called δ-permutably reducible, where δ = {i1, . . . , ik} ⊂ 1, n, if there
exist an s-invertible (n−k)-ary operation g and a k-ary operation h such that f can
be represented as

f(x1, . . . , xn) = g(xj1 , . . . , xjs−1 , h(xi1 , . . . , xik), xjs+1 , . . . , xjn−k+1
).

Lemma 2. Let δ ⊂ 1, n, |δ| = k and each of the operations from a k-tuple of
orthogonal n-ary operations be δ-permutably reducible. If there exists a tuple of
similar orthogonal δ-retracts of operations of the tuple, then the k-tuple is δ-retractly
orthogonal.

Proof. Let

δ = {i1, . . . , ik} ⊆ 1, n, 1, n \δ = {j1, . . . , js−1, js+1, . . . , jn−k+1}

and for all i ∈ 1, k, an n-ary operation fi be δ-permutably reducible, i.e., there exist
an s-invertible (n− k)-ary operation gi and a k-ary operation hi such that fi can be
represented as

fi(x1, . . . , xn) = gi(xj1, . . . , xjs−1 , hi(xi1 , . . . , xik), xjs+1 , . . . , xjn−k+1
).

Suppose there exists a tuple of orthogonal δ-retracts of operations f1, . . . , fk,
i.e., there exists a tuple ā = (aj1 , . . . , ajs−1, ajs+1 , . . . , ajn−k+1

) ∈ Qn−k such that for
all b1, . . . , bk the system







g1(aj1, . . . , ajs−1 , h1(xi1 , . . . , xik), ajs+1 , . . . , ajn−k+1
) = b1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
gk(aj1 , . . . , ajs−1 , hk(xi1 , . . . , xik), ajs+1 , . . . , ajn−k+1

) = bk

(5)

has a unique solution. Since g1,. . . , gk are s-invertible, their s-translations are
bijective mappings of Q onto Q, i.e., for all i ∈ 1, k a transformation αi defined by

αiu := gi(aj1 , . . . , ajs−1, u, ajs+1 , . . . , ajn−k+1
)

is a bijection of Q onto Q. Hence, the system (5) can be written as






h1(xi1 , . . . , xik) = α−1
1 b1,

. . . . . . . . . . . . . . . . . . . . . . . .

hk(xi1 , . . . , xik) = α−1
k bk.

Note that α−1
1 b1,. . . , α−1

k bk take all values on Q with b1,. . . , bk simultaneously. This
means that the uniqueness of solution of (5) doesn’t depend on ā. Therefore, the
system has a unique solution for all ā ∈ Qn−k. Thus, the operations f1, . . . , fk are
δ-retractly orthogonal.

Summarizing Lemma 2 and Theorem 5, we have the following assertion.

Corollary 1. Let δ ⊂ 1, n, |δ| = k and each operation of a k-tuple of n-ary oper-
ations be δ-permutably reducible. Then if there exists a tuple of similar orthogonal
δ-retracts of operations of the tuple, then the k-tuple is orthogonal.
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3 Orthogonality of linear operations

A linear transformation of a group is defined as a composition of its translations
and automorphisms. An n-ary quasigroup (Q, f) is called an isotope of a binary
group (Q; +) if (Q; f) is isotopic to (Q; d), where d(x1, . . . , xn) := x1 + · · · + xn. If
all components of the isotopism are linear transformations over (Q; +), then (Q; f)
is called linear on (Q; +).

If an n-ary quasigroup f is linear on a group (Q; +), then it has decomposition

f(x1, . . . , xn) = α1x1 + · · · + αnxn + a,

where a ∈ Q and α1, . . . , αn are automorphisms of (Q; +). The decomposition
is called canonical and α1,. . . ,αn are called decomposition automorphisms [10]. A
linear isotope of an abelian group is called a central quasigroup (or a T -quasigroup).

It is easy to verify that every linear operation over an abelian group is permutably
reducible, i.e., it is a repetition-free composition of two linear operations over this
group. Besides, each of the two variables can be separated. Thus, Lemma 2 and
Corollary 1 are performed for linear operations over an abelian group.

Proposition 2. Let δ = {i1, . . . , ik} ⊂ 1, n and 1, n \δ = {j1, . . . , jn−k}. Then n-ary
linear operations f1,. . . , fk over an abelian group (Q; +) are δ-retractly orthogonal
if and only if for all q ∈ 1, k, each of these operations can be represented as

fq(x1, . . . , xn) = pq(hq(xi1 , . . . , xik), xj1 , . . . , xjn−k
), (6)

where h1,. . . , hk are orthogonal and p1,. . . , pk are 1-invertible.

Proof. Let for all q ∈ 1, k,

fq(x1, . . . , xn) := αq1x1 + · · · + αqnxn + aq, (7)

where αq1,. . . ,αqn are linear transformations of (Q; +) and aq ∈ Q.
Suppose f1,. . . , fk are δ-retractly orthogonal. Since (Q; +) is abelian, the equal-

ity (7) can be rewritten as

fq(x1, . . . , xn) = αqi1xi1 + · · · + αqikxik+

+ αqj1xj1 + · · · + αqjn−k
xjn−k

+ aq.

We can rewrite the last equality:

fj(x1, . . . , xn) = β(β−1αqi1xi1 + · · · + β−1αqikxik)+

+ αqj1xj1 + · · · + αqjn−k
xjn−k

+ aq,

where β is an arbitrary automorphism of (Q; +). Hence for all q ∈ 1, k, the operation
fq has the form (6), where

hq(xi1 , . . . , xik) := β−1αqi1xi1 + · · · + β−1αqikxik ,

pq(u, xj1 , . . . , xjn−k
) := βu + αqj1xj1 + · · · + αqjn−k

xjn−k
+ aq.
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Orthogonality of h1,. . . , hk follows from δ-retract orthogonality of f1,. . . , fk and
Remark 2.

Sufficiency follows from Remark 1.

Corollary 2. Let k 6 n and f1, . . . , fk be n-ary linear operations over (Zm; +). If
there exists a minor of the order k of the corresponding matrix for f1, . . . , fk which
is relatively prime to m, then the operations are orthogonal.

Proof. Suppose there exists a minor of order k of the corresponding matrix for
operations f1, . . . , fk which is relatively prime to m. This minor is the corresponding
determinant for some k-ary retracts of operations f1, . . . , fk, i.e., f1, . . . , fk are
retractly orthogonal. Then by Theorem 5, the operations f1, . . . , fk are orthogonal.

Note there exist orthogonal linear operations over an abelian group which are
not retractly orthogonal (see, Example 1). In particular, there exist such orthogonal
central quasigroups over a group of non-prime order.

Corollary 3. Let k 6 n and p be a prime number. n-ary central quasigroups f1, . . . ,
fk over field (Zp; +, ·) are orthogonal if and only if there exists δ such that |δ| = k

and f1, . . . , fk are δ-retractly orthogonal.

Proof. For all i ∈ 1, k, the quasigroup fi has the form

fi(x1, . . . , xn) = ai1x1 + ai2x2 + · · · + ainxn + ai,

where ai1, ai2, . . . , ain are arbitrary invertible elements from (Zp; +, ·) and ai ∈ Zp.
Suppose f1, . . . , fk are orthogonal, this means that for all b1, . . . , bk ∈ Zp the

system (3) has pn−k solutions, i.e., rank(A) = k, where

A =









a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . .

ak1 ak2 . . . akn









.

Since f1,. . . , fk are orthogonal, there exists an invertible submatrix M of order k of
matrix A. The matrix M corresponds to some k-tuple of k-ary δ-retracts of f1, . . . ,
fk, where |δ| = k. By virtue of Corollary 2, the quasigroups f1, . . . , fk are δ-retractly
orthogonal.

The sufficiency follows from Theorem 5.

Example 2. Let p be a prime number, a1, . . . , ak be pairwise different and non-zero
elements from Zp. If the corresponding matrix for n-ary central quasigroups f1, . . . ,
fk over (Zp; +, ·), where k 6 n, is the Vandermonde matrix, i.e.,









1 a1 a2
1 . . . ak−1

1

1 a2 a2
2 . . . ak−1

2

. . . . . . . . . . . . . . .

1 ak a2
k . . . ak−1

k









,



ORTHOGONALITY AND RETRACT ORTHOGONALITY OF OPERATIONS 33

and for every i, j ∈ 1, k, inequality ai 6= aj holds, then f1, . . . , fk are 1, s-retractly
orthogonal for all s = 2, . . . , n.
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