dc.contributor.author |
Sokhatsky, Fedir M. |
|
dc.contributor.author |
Fryz, Iryna V. |
|
dc.date.accessioned |
2022-09-11T09:51:23Z |
|
dc.date.available |
2022-09-11T09:51:23Z |
|
dc.date.issued |
2012 |
|
dc.identifier.uri |
https://r.donnu.edu.ua/handle/123456789/2383 |
|
dc.description |
Article in the journal COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE (2012) |
en_US |
dc.description.abstract |
We study the Invertibility of operations that are a composition of two operations of arbitrary arities. We find the criterion for quasigroups and specifications for T-quasigroups. For this purpose, we introduce notions of perpendicularity of operations and hypercubes. They differ from the previously introduced notions of orthogonality of operations and hypercubes [G. Belyavskaya, G. Mullen, Orthogonal hypercubes and n-ary operations, Quasigroups Related System 13 (2005), no. 1, 73-86]/ we establish some relations between these notions and give illustrative examples/ |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Czech Republic: COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE |
en_US |
dc.relation.ispartofseries |
Comment.Math.Univ.Carolin;53,3 (2012) P. 429-445 |
|
dc.subject |
quasigroup |
en_US |
dc.subject |
composition of operations |
en_US |
dc.subject |
orthogonal operations |
en_US |
dc.subject |
perpendicular operations |
en_US |
dc.subject |
hypercube |
en_US |
dc.subject |
perpendicular hypercubes |
en_US |
dc.subject |
orthogonality of hypercubes |
en_US |
dc.subject |
slice |
en_US |
dc.subject |
linear quasigroup |
en_US |
dc.subject |
T-quasigroup |
en_US |
dc.title |
Invertibility criterion of composition of two multiary quasigroups |
en_US |
dc.type |
Article |
en_US |