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In the present paper we deal with the Dirichlet problem for a class of degenerate anisotropic
elliptic second-order equations with L1-right-hand sides in a bounded domain of Rn (n > 2).
This class is described by the presence of a set of exponents q1, . . . , qn and a set of weighted
functions ν1, . . . , νn in growth and coercitivity conditions on coefficients of the equations. The
exponents qi characterize the rates of growth of the coefficients with respect to the corre-
sponding derivatives of unknown function, and the functions νi characterize degeneration or
singularity of the coefficients with respect to independent variables. Our aim is to study the
uniqueness of entropy solution of the problem under consideration.

Introduction. The studying of nonlinear elliptic second-order equations with L1-data and
measures as data is one of the important directions of a modern differential equation theory.
In this theory the concepts of a weak solution, entropy solution, renormalized solution were
introduced, the theorems on existence and uniqueness of these solutions were proved, and
their belonging to Lebesgue and Sobolev spaces were established.

A weak solution (solution from W 1,1 in sense of the integral identity for smooth functions)
to equations with L1-right-hand sides is a natural analogue of a generalized solution to
equations with “well enough”, right-hand sides. The theorems on the existence of a weak
solution to the Dirichlet problem for nonlinear elliptic equations were obtained in [5], [6].
Remark that a weak solution exists not for all values of a parameter characterizing the
growth of equation’s coefficients with respect to the corresponding derivatives of unknown
function. In general, a weak solution is not a unique one.

An effective approach to the solvability of the Dirichlet problem for nonlinear elliptic
second-order equations with L1-right-hand sides has been proposed in [4]. There a concept
of an entropy solution to the problem under consideration was introduced. This solution
belongs to a new special function’s class that includes the corresponding Sobolev space. Under
standard growth, coercitivity and strict monotonicity conditions on the equation’s coefficients
authors proved the theorem on existence and uniqueness of an entropy solution to the given
problem. Notice that an entropy solution is unique for all values of a parameter characterizing
the growth of equation’s coefficients with respect to the corresponding derivatives of unknown
function.
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Above-mentioned works and other close investigations are devoted to L1-theory for nonli-
near equations with isotropic and nondegenerate (with respect to the independent variables)
coefficients. As for the solvability of nonlinear elliptic second-order equations with anisotropy
and degeneracy (with respect to the independent variables), we note the following works.
The existence of a weak solution to the Dirichlet problem for a model nondegenerate ani-
sotropic equation with right-hand side measure was established in [7]. The existence of weak
solutions for a class of nondegenerate anisotropic equations with locally integrable data was
proved in [3]. Solvability of the Dirichlet problem for degenerate isotropic equations with
L1-data and measures as data was studied in [1], [2], [8], [9], [16]. Remark that in [1], [8], the
existence of entropy solutions to the given problem was proved in the case of L1-data, and in
[2], the existence of a renormalized solution of the problem for the same case was established.
In [2], [9], [16], the existence of distributional solutions of the problem was obtained in the
case of right-hand side measures.

Solvability of the Dirichlet problem for a class of degenerate anisotropic elliptic second-
order equations with L1-right-hand sides was studied in [14]. This class is described by
the presence of a set of exponents q1, . . . , qn and of a set of weighted functions ν1, . . . , νn
in growth and coercitivity conditions on coefficients of the equations under consideration.
The exponents qi characterize the rates of growth of the coefficients with respect to the
corresponding derivatives of unknown function, and the functions νi characterize degenerati-
on or singularity of the coefficients with respect to the independent variables.

In [14], the theorem on the existence and uniqueness of entropy solution to the Dirichlet
for this class of the equations was proved (see [14], Theorem 3.2). Observe that the proof
of this theorem is based on use of some results of [11]–[13] on the existence and properties
of solutions of second-order variational inequalities with L1-right-hand sides and sufficiently
general constraints. Note that in [11]–[14] right-hand sides to the investigated variational
inequalities and equations depend on independent variables only, and belong to the class L1.

The present paper is devoted to the Dirichlet problem for the same class of the nonlinear
elliptic second-order equations in divergence form with degenerate anisotropic coefficients
as in [14]. Now right-hand sides to the given equations depend on independent variables
and unknown function. In our case we have no opportunity to use the results [11]–[13]
directly. We follow a general approach for proving the main result of this work (theorem 1).
As we mentioned above, this approach has been proposed in [4] to the investigation on
the existence and properties of solutions for nonlinear elliptic second-order equations with
isotropic nondegenerate (with respect to the independent variables) coefficients and L1-right-
hand sides. In [11], [13] this approach has been taken to the anisotropic degenerate case. Also
we use some ideas of [15].

1. Preliminaries. In this section we give some results of [13] which will be used in the
sequel.

Let n ∈ N, n > 2, Ω be a bounded domain in Rn with the boundary ∂Ω, and let for every
i ∈ {1, . . . , n} we have qi ∈ (1, n).

We set q = {qi : i = 1, . . . , n},

q =

(
1

n

n∑
i=1

1

qi

)−1

, q̂ =
n(q − 1)

(n− 1)q
.

Let for every i ∈ {1, . . . , n} νi be a nonnegative function on Ω such that νi > 0 a.e.
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in Ω,
νi ∈ L1

loc(Ω), (1/νi)
1/(qi−1) ∈ L1(Ω). (1)

We set ν = {νi : i = 1, . . . , n}. We denote by W 1,q(ν,Ω) the set of all functions u ∈
W 1,1(Ω) such that for every i ∈ {1, . . . , n} we have νi|Diu |qi ∈ L1(Ω).

Let ∥ · ∥1,q,ν be the mapping from W 1,q(ν,Ω) into R such that for every function u ∈
W 1,q(ν,Ω)

∥u∥1,q,ν =

∫
Ω

|u|dx+
n∑

i=1

(∫
Ω

νi|Diu| qidx
)1/qi

.

The mapping ∥ · ∥1,q,ν is a norm in W 1,q(ν,Ω), and, in view of the second inclusion of (1),
the set W 1,q(ν,Ω) is a Banach space with respect to the norm ∥ · ∥1,q,ν . Moreover, by virtue
of the first inclusion of (1), we have C∞

0 (Ω) ⊂ W 1,q(ν,Ω).

We denote by
◦
W 1,q(ν,Ω) the closure of the set C∞

0 (Ω) in space W 1,q(ν,Ω). Evidently, the

set
◦
W 1,q(ν,Ω) is a Banach space with respect to the norm induced by the norm ∥ · ∥1,q,ν . It

is obvious that
◦
W 1,q(ν,Ω) ⊂

◦
W 1,1(Ω).

Further, let for every k > 0 Tk : R → R be the function such that

Tk(s) =

{
s, if |s| 6 k,

k sign s, if |s| > k.

By analogy with known results for nonweighted Sobolev spaces (see for instance [10]) we

have: if u ∈
◦
W 1,q(ν,Ω), and k > 0, then Tk(u) ∈

◦
W 1,q(ν,Ω), and for every i ∈ {1, . . . , n},

DiTk(u) = Diu · 1{|u|<k} a. e. in Ω. (2)

We denote by
◦
T 1,q(ν,Ω) the set of all functions u : Ω → R such that for every k > 0

Tk(u) ∈
◦
W 1,q(ν,Ω). Clearly,

◦
W 1,q(ν,Ω) ⊂

◦
T 1,q(ν,Ω).

For every u : Ω → R and for every x ∈ Ω we set k(u, x) = min{l ∈ N : |u(x)| 6 l}.

Definition 1. Let u ∈
◦
T 1,q(ν,Ω), and i ∈ {1, . . . , n}. Then δiu : Ω → R is the function such

that for every x ∈ Ω δiu(x) = DiTk(u,x)(u) (x).

Definition 2. If u ∈
◦
T 1,q(ν,Ω), then δu : Ω → Rn is the mapping such that for every x ∈ Ω

and for every i ∈ {1, . . . , n} (δu(x))i = δiu(x).

Now we give several propositions which will be used in the next sections.

Proposition 1. Let u ∈
◦
T 1,q(ν,Ω). Then for every k > 0 we have DiTk(u) = δiu · 1{|u|<k}

a. e. in Ω, i = 1, . . . , n.

Note that for every function u ∈
◦
W 1,q(ν,Ω) δiu = Diu a.e. in Ω, i = 1, . . . , n.

Proposition 2. Let u ∈
◦
T 1,q(ν,Ω), w ∈

◦
W 1,q(ν,Ω) ∩ L∞(Ω). Then u− w ∈

◦
T 1,q(ν,Ω), and

for every i ∈ {1, . . . , n} and for every k > 0 we have

DiTk(u− w) = δiu−Diw a.e. in {|u− w| < k}.
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Proposition 3. There exists a positive constant c0 depending only on n, q, ∥1/νi∥L1/(qi−1)(Ω),

i = 1, . . . , n, such that for every function u ∈
◦
W 1,q(ν,Ω)(∫

Ω

|u|n/(n−1)dx

)(n−1)/n

6 c0

n∏
i=1

(∫
Ω

νi|Diu|qidx
)1/nqi

.

2. Statement of the Dirichlet problem. The concept of its entropy solution. Let
c1, c2 > 0, g1, g2 ∈ L1(Ω), g1, g2 > 0 in Ω, and let for every i ∈ {1, . . . , n} ai : Ω× Rn → R
be a Carathéodory function. We suppose that for almost every x ∈ Ω and for every ξ ∈ Rn,

n∑
i=1

(1/νi)
1/(qi−1)(x)|ai(x, ξ)|qi/(qi−1) 6 c1

n∑
i=1

νi(x)|ξi|qi + g1(x), (3)

n∑
i=1

ai(x, ξ)ξi > c2

n∑
i=1

νi(x)|ξi|qi − g2(x). (4)

Moreover, we assume that for almost every x ∈ Ω and for every ξ, ξ′ ∈ Rn, ξ ̸= ξ′,
n∑

i=1

[ai(x, ξ)− ai(x, ξ
′)] (ξi − ξ′i) > 0. (5)

Now we give one result of [14] which will be used in the sequel.

Proposition 4. The following assertions hold:

a) if u ∈
◦
T 1,q(ν,Ω), w ∈

◦
W 1,q(ν,Ω)∩L∞(Ω), k > 0, l > k+ ∥w∥L∞(Ω), and i ∈ {1, . . . , n},

then ai(x, δu)DiTk(u− w) = ai(x,∇Tl(u))DiTk(u− w) a.e. in Ω;

b) if u ∈
◦
T 1,q(ν,Ω), w ∈

◦
W 1,q(ν,Ω) ∩ L∞(Ω), k > 0, and i ∈ {1, . . . , n},

then ai(x, δu)DiTk(u− w) ∈ L1(Ω).

Let F : Ω × R → R be a Carathéodory function. We consider the following Dirichlet
problem:

−
n∑

i=1

∂

∂xi

ai(x,∇u) = F (x, u) in Ω, (6)

u = 0 on ∂Ω. (7)

Definition 3. An entropy solution of problem (6), (7) is a function u ∈
◦
T 1,q(ν,Ω) such that:

F (x, u) ∈ L1(Ω); (8)

for every function w ∈
◦
W 1,q(ν,Ω) ∩ L∞(Ω) and for every k > 1,∫

Ω

{ n∑
i=1

ai(x, δu)DiTk(u− w)

}
dx 6

∫
Ω

F (x, u)Tk(u− w)dx. (9)

Note that the left-hand integral in (9) is finite. It follows from assertion b) of Proposi-
tion 4. The right-hand integral in (9) is also finite. It follows from the boundedness of the
function Tk and inclusion (8).
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3. On uniqueness of an entropy solution. Firstly, we prove two auxiliary results.

Lemma 1. Let u be an entropy solution of the Dirichlet problem (6), (7). Then there exists
a nonnegative constant M such that for every k > 1,

meas {|u| > k} 6 Mk−q̂. (10)

Proof. We fix an arbitrary function v ∈
◦
W 1,q(ν,Ω) ∩ L∞(Ω), and set

M∗ =
2

c2

{
c2
2c1

∥g1∥L1(Ω) + ∥g2∥L1(Ω) + (2n)n−1
(c1
c2

+ 1
)n−1

∫
Ω

{ n∑
i=1

νi|Div|qi
}
dx+

+(1 + ∥v∥L∞(Ω))

∫
Ω

|F (x, u)| dx

}
, M =

(
c0M

1/q̄
∗
)n/(n−1)

.

Let k > 1. We put k1 = k + ∥v∥L∞(Ω),

I =
n∑

i=1

∫
{|u−v|<k1}

νi|δiu|qidx, J =
n∑

i=1

∫
{|u−v|<k1}

|ai(x, δu)| |Div| dx.

In view of (9),∫
Ω

{ n∑
i=1

ai(x, δu)DiTk1(u− v)

}
dx 6

∫
Ω

F (x, u)Tk1(u− v)dx.

Using Propositions 1 and 2, and (4), we obtain from this inequality:

c2I 6 k1

∫
Ω

|F (x, u)| dx+ ∥g2∥L1(Ω) + J.

On the other hand, taking into account Young’s inequality and (3), we find that

J 6 c2
2
I +

c2
2c1

∥g1∥L1(Ω) + (2n)n−1
(c1
c2

+ 1
)n−1

∫
Ω

{ n∑
i=1

νi|Div|qi
}
dx.

From latter two estimates it follows that

I 6 M∗k. (11)

Further, we have |Tk(u)| = k on {|u| > k}. Then

kn/(n−1) meas {|u| > k} 6
∫
Ω

|Tk(u)|n/(n−1) dx. (12)

Since Tk(u) ∈
◦
W 1,q(ν,Ω), from (11), Propositions 3 and 1 we get(∫

Ω

|Tk(u)|n/(n−1)dx

)(n−1)/n

6 c0

n∏
i=1

(∫
Ω

νi |DiTk(u)|qidx

)1/nqi

=

= c0

n∏
i=1

(∫
{|u|<k}

νi |δiu|qidx

)1/nqi

6 c0

n∏
i=1

(∫
{|u−v|<k1}

νi |δiu|qidx

)1/nqi

6

6 c0I
1/q̄ 6 c0(M∗k)

1/q̄.

This estimate and (12) imply (10).
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Lemma 2. Let u be an entropy solution of the Dirichlet problem (6), (7). Then for every

v ∈
◦
W 1,q(ν,Ω) ∩ L∞(Ω), k > 1, h > 1,∫

{h6|u−v|<h+k}

{ n∑
i=1

νi|δiu|qi
}
dx 6 2k

c2

∫
{|u−v|>h}

|F (x, u)| dx+

+
2(2n)n−1

c2

(c1
c2

+ 1
)n−1

∫
{h6|u−v|<h+k}

{ n∑
i=1

νi|Div|qi + g1 + g2

}
dx. (13)

Proof. We fix arbitrary v ∈
◦
W 1,q(ν,Ω) ∩ L∞(Ω), k > 1, and h > 1.

Put
w = v + Th(u− v), k1 = k + ∥w∥L∞(Ω).

From (9) and assertion a) of Proposition 4 it follows that∫
{|u−w|<k}

{ n∑
i=1

ai(x,∇Tk1(u))DiTk(u− w)

}
dx 6 k

∫
{|u−v|>h}

|F (x, u)| dx. (14)

We set G1 = {h 6 |u− v| < h+ k}, G2 = {|u− v| < h}. Observe that

{|u− w| < k} = G1 ∪G2, G1 ∩G2 = ∅. (15)

We have

Tk(u− w) = Tk1(u)− v − Th(u− v) a.e. in G1, Tk(u− w) = 0 in G2.

Hence, for every i ∈ {1, . . . , n},

Di Tk(u− w) = Di Tk1(u)−Div a.e. in G1, Di Tk(u− w) = 0 a.e. in G2.

These facts, and (14), (15) imply∫
G1

{ n∑
i=1

ai(x,∇Tk1(u))Di Tk1(u)

}
dx 6

6
∫
G1

{ n∑
i=1

ai(x,∇Tk1(u))Div

}
dx+ k

∫
{|u−v|>h}

|F (x, u)| dx. (16)

We denote by I1 the integral from the left-hand side of (16), and by I2 the integral from
the right-hand side of (16). By virtue of (4), we get

I1 > c2

∫
G1

{ n∑
i=1

νi|Di Tk1(u)|qi
}
dx−

∫
G1

g2 dx.

From this estimate and (16) it follows that

c2

∫
G1

{ n∑
i=1

νi|Di Tk1(u)|qi
}
dx 6 k

∫
{|u−v|>h}

|F (x, u)| dx+

∫
G1

g2 dx+ I2. (17)
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Using (3) and Young’s inequality, we obtain

I2 6
c2
2

∫
G1

{ n∑
i=1

νi|Di Tk1(u)|qi
}
dx+

c2
2c1

∫
G1

g1 dx+

+(2n)n−1
(c1
c2

+ 1
)n−1

∫
G1

{ n∑
i=1

νi|Div|qi
}
dx. (18)

Note that in view of proposition 1 for every i ∈ {1, . . . , n} we have Di Tk1(u) = δiu a.e.
in G1. Taking into account this fact, we deduce the inequality (13) from (17) and (18).

Next theorem is the main result of this paper.

Theorem 1. Let for a.e. x ∈ Ω F (x, ·) be the nonincreasing function on R, and let u1, u2

be entropy solutions of the Dirichlet problem (6), (7). Then u1 = u2 a.e. in Ω.

Proof. We denote by ci, i = 3, 4, . . . , the positive constants depending only on n, c1 and c2.
Fix an arbitrary function v ∈

◦
W 1,q(ν,Ω) ∩ L∞(Ω), and set

Φj =
n∑

i=1

νi|Div|qi + g1 + g2 + |F (x, uj)|, j = 1, 2.

From Lemma 2 it follows that for every k > 1, h > k + 1,∫
{h−k6|uj−v|<h+k}

{ n∑
i=1

νi|δiuj|qi
}
dx 6 c3 k

∫
{|uj−v|>h−k}

Φj dx, j = 1, 2. (19)

Fix an arbitrary k > 1, h > k + 1, and put

G = {|u1 − u2| < k, |u1 − v| < h, |u2 − v| < h}, G1 = {|u1 − v| < h, |u2 − v| < h},
G2 = {|u1 − v| > h} ∪ {|u2 − v| > h}, w = v + Th(u2 − v), l = k + ∥w∥L∞(Ω).

By virtue of Definition 3 and assertion a) of Proposition 4, we have∫
Ω

{ n∑
i=1

ai(x, δu1)DiTk(u1 − w)

}
dx =

∫
Ω

{ n∑
i=1

ai(x,∇Tl(u1))DiTk(u1 − w)

}
dx 6

6
∫
G1

F (x, u1)Tk(u1 − u2) dx+ k

∫
G2

|F (x, u1)| dx. (20)

Now we estimate lower bound the left-hand side of this inequality. Put

E ′ = {|u1 − w| < k, |u2 − v| < h}, E ′′ = {|u1 − w| < k, |u2 − v| > h}.

It is clear that
G ⊂ E ′. (21)

Besides, we have

E ′ \G ⊂ {h 6 |u1 − v| < h+ k} ∩ {h− k 6 |u2 − v| < h}, (22)
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E ′′ ⊂ {h− k 6 |u1 − v| < h+ k}. (23)

In fact, let x ∈ E ′ \G. Then |u1(x)− u2(x)| < k, |u2(x)− v(x)| < h, |u1(x)− v(x)| > h.
Hence,

h 6 |u1(x)− v(x)| 6 |u1(x)− u2(x)|+ |u2(x)− v(x)| < k + |u2(x)− v(x)| < h+ k.

Inclusion (22) follows from these estimates. Let now x ∈ E ′′. Therefore,

|u1(x)− w(x)| < k, |u2(x)− v(x)| > h. (24)

By virtue of the second inequality of (24), and definition of the function w we have
w(x) = v(x) + h sign (u2(x)− v(x)). So, in view of the first inequality of (24), we get

|u1(x)− v(x)| 6 |u1(x)− w(x)|+ |w(x)− v(x)| < h+ k,

h = |v(x)− w(x)| 6 |u1(x)− v(x)|+ |u1(x)− w(x)| < |u1(x)− v(x)|+ k.

Hence, inclusion (23) is true.
Further, since

Tk(u1 − w) = Tl(u1)− Tl(u2) a.e. in E ′,

for every i ∈ {1, . . . , n} we have

Di Tk(u1 − w) = Di Tl(u1)−Di Tl(u2) a.e. in E ′. (25)

By analogy,
Tk(u1 − w) = Tl(u1)− v − Th(u2 − v) a.e. in E ′′,

thus, for every i ∈ {1, . . . , n} we have

Di Tk(u1 − w) = Di Tl(u1)−Div a.e. in E ′′. (26)

Taking into account (25) and (26), we obtain∫
Ω

{ n∑
i=1

ai(x,∇Tl(u1))DiTk(u1 − w)

}
dx =

=

∫
E′

{ n∑
i=1

ai(x,∇Tl(u1)) [Di Tl(u1)−DiTl(u2)]

}
dx+

+

∫
E′′

{ n∑
i=1

ai(x,∇Tl(u1)) [Di Tl(u1)−Div]

}
dx.

From this fact, (21), and (4) it follows that∫
Ω

{ n∑
i=1

ai(x,∇Tl(u1))DiTk(u1 − w)

}
dx >

>
∫
G

{ n∑
i=1

ai(x,∇Tl(u1)) [Di Tl(u1)−DiTl(u2)]

}
dx−

∫
(E′\G)∪E′′

g2 dx−

−
∫
E′\G

{ n∑
i=1

|ai(x,∇Tl(u1))| |Di Tl(u2)|
}
dx−

∫
E′′

{ n∑
i=1

|ai(x,∇Tl(u1))| |Di v|
}
dx. (27)
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We denote by I ′ and I ′′ the third and fourth integral in the right-hand side of the latter
estimate correspondingly. Using Young’s inequality and (3), we get

I ′ 6 c1

∫
E′\G

{ n∑
i=1

νi |Di Tl(u1)|qi
}
dx+

∫
E′\G

{ n∑
i=1

νi |Di Tl(u2)|qi
}
dx+

∫
E′\G

g1 dx, (28)

I ′′ 6 c1

∫
E′′

{ n∑
i=1

νi |Di Tl(u1)|qi
}
dx+

∫
E′′

{ n∑
i=1

νi |Di v|qi
}
dx+

∫
E′′

g1 dx. (29)

In view of Proposition 1, inclusions (22) and (23), and inequality (19) we have∫
(E′\G)∪E′′

{ n∑
i=1

νi |Di Tl(u1)|qi
}
dx =

=

∫
(E′\G)∪E′′

{ n∑
i=1

νi |δiu1|qi
}
dx 6 c3 k

∫
{|u1−v|>h−k}

Φ dx, (30)

∫
E′\G

{ n∑
i=1

νi |Di Tl(u2)|qi
}
dx =

∫
E′\G

{ n∑
i=1

νi |δiu2|qi
}
dx 6 c3 k

∫
{|u2−v|>h−k}

Φ dx. (31)

From (28)–(31) and (22), (23) we infer that∫
(E′\G)∪E′′

g2 dx+ I ′ + I ′′ 6 c4 k

{∫
{|u1−v|>h−k}

Φ1 dx+

∫
{|u2−v|>h−k}

Φ2 dx

}
.

Using this inequality and (27), we deduce that∫
Ω

{ n∑
i=1

ai(x,∇Tl(u1))DiTk(u1 − w)

}
dx >

>
∫
G

{ n∑
i=1

ai(x,∇Tl(u1)) [Di Tl(u1)−Di Tl(u2)]

}
dx−

−c4 k

{∫
{|u1−v|>h−k}

Φ1 dx+

∫
{|u2−v|>h−k}

Φ2 dx

}
. (32)

In view of Proposition 1 ∇Tl(uj) = δuj a.e. in G, j = 1, 2.
This fact, (32) and (20) imply∫

G

{ n∑
i=1

ai(x, δu1) [δiu1 − δiu2]

}
dx 6

6
∫
G1

F (x, u1)Tk(u1 − u2) dx+ c5 k

{∫
{|u1−v|>h−k}

Φ1 dx+

∫
{|u2−v|>h−k}

Φ2 dx

}
.

By analogy we have ∫
G

{ n∑
i=1

ai(x, δu2) [δiu2 − δiu1]

}
dx 6

6
∫
G1

F (x, u2)Tk(u2 − u1) dx+ c5 k

{∫
{|u1−v|>h−k}

Φ1 dx+

∫
{|u2−v|>h−k}

Φ2 dx

}
.
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Adding two latter inequalities, we establish that for every k > 1, h > k + 1,∫
{|u1−u2|<k,|u1−v|<h,|u2−v|<h}

{ n∑
i=1

[ai(x, δu1)− ai(x, δu2)] [δiu1 − δiu2]

}
dx 6

6
∫
{|u1−v|<h,|u2−v|<h}

[F (x, u1)− F (x, u2)]Tk(u1 − u2) dx+

+2 c5 k

{∫
{|u1−v|>h−k}

Φ1 dx+

∫
{|u2−v|>h−k}

Φ2 dx

}
. (33)

As for a. e. x ∈ Ω the function F (x, ·) is nonincreasing on R, we have

[F (x, u1)− F (x, u2)]Tk(u1 − u2) 6 0 a.e. in Ω. (34)

From Lemma 1 it follows that

meas {|uj − v| > h− k} → 0, h → +∞, k > 1, j = 1, 2.

This fact imply

∀k > 1

∫
{|uj−v|>h−k}

Φj dx → 0, h → +∞, j = 1, 2. (35)

Taking into account (34), (5), and using Fatou’s lemma, we infer from (33), (35)

δu1 = δu2 a. e. in Ω. (36)

Let again k > 1, h > k + 1. Put

z = Th(u1 − v)− Th(u2 − v).

Clearly, z ∈
◦
W 1,q(ν,Ω). Hence, Tk(z) ∈

◦
W 1,q(ν,Ω). In view of Proposition 3 and Young’s

inequality we have(∫
Ω

|Tk(z)|n/(n−1)dx

)(n−1)/n

6 c0

n∑
i=1

(∫
Ω

νi |Di Tk(z)|qidx

)1/qi

. (37)

Let

H1 = {|z| < k, |u1 − v| < h, |u2 − v| < h}, H2 = {|z| < k, |u1 − v| < h, |u2 − v| > h},
H3 = {|z| < k, |u1 − v| > h, |u2 − v| < h}, H4 = {|z| < k, |u1 − v| > h, |u2 − v| > h}.

It is obvious that

Hm ∩Hr = ∅, m ̸= r, m, r = 1, . . . , 4, {|z| < k} =
4∪

m=1

Hm. (38)

We fix an arbitrary i ∈ {1, . . . , n}. Taking into account (2) and (38), we obtain∫
Ω

νi |Di Tk(z)|qi dx =
4∑

m=1

∫
Hm

νi |Diz|qi dx. (39)
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From Proposition 2 and (36) we get

Diz = 0 a.e. in H1. (40)

It is easy to show that

H2 ⊂ {h− k < |u1 − v| < h}, H3 ⊂ {h− k < |u2 − v| < h}. (41)

Besides, in view of Propositions 1 and 2,

Diz = δiu1 −Div a.e. in H2, (42)
Diz = Div − δiu2 a.e. in H3. (43)

Using (41)–(43) and (19), we establish∫
H2

νi |Di z|qi dx 6 2n(c3 + 1) k

∫
{|u1−v|>h−k}

Φ1 dx, (44)∫
H3

νi |Di z|qi dx 6 2n(c3 + 1) k

∫
{|u2−v|>h−k}

Φ2 dx. (45)

Finally, Propositions 2 and 1 imply that

Diz = 0 a.e. in H4. (46)

From (39), (40), and (44)–(46) we deduce∫
Ω

νi |Di Tk(z)|qi dx 6 2n(c3 + 1) k

{∫
{|u1−v|>h−k}

Φ1 dx+

∫
{|u2−v|>h−k}

Φ2 dx

}
.

From this fact and (37) it follows that for every k > 1 and h > k + 1,(∫
{|u1−u2|<k,|u1−v|<h,|u2−v|<h}

|u1 − u2|n/(n−1)dx

)(n−1)/n

6

6 c0 c6 k

n∑
i=1

{∫
{|u1−v|>h−k}

Φ1 dx+

∫
{|u2−v|>h−k}

Φ2 dx

}1/qi

.

The latter result and assertion (35) allow to conclude that for every k > 1,∫
{|u1−u2|<k}

|u1 − u2|n/(n−1)dx = 0.

Hence, u1 = u2 a.e. in Ω.
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4. Bénilan Ph., Boccardo L., Gallouët T., Gariepy R., Pierre M., Vazquez J.L. An L1-theory of existence
and uniqueness of solutions of nonlinear elliptic equations// Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4).
– 1995. – V.22, №2. – P. 241–273.
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