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a b s t r a c t

We propose an algorithm for constructing orthogonal n-ary operations which is called
a block composition algorithm here. Input data of the algorithm are two series of differ-
ent arity operations being distributed by blocks. The algorithm consists of two parts:
composition algorithm for constructing n-ary operations with orthogonal retracts from
given blocks of operations and block-wise recursive algorithm for constructing orthogonal
n-ary operations from obtained operations. Obtained results are illustrated by examples
of orthogonal n-ary operations which are constructible by block-wise recursive algorithm
and non-constructible by the well-known trivial recursive algorithm.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Construction of MDS-codes, hash-functions, and secret-sharing schemes is reduced to construction of orthogonal n-ary
operations, partial orthogonal n-ary operations, orthogonal n-ary quasigroups, for example, [2,4,6,8].

Even in the case n = 2, constructing orthogonal operations is non-trivial and many questions remain open although its
study started in L. Euler’s work and attracts attention up to the present time. The detailed review of well-knownmethods of
construction of orthogonal binary operations is considered in [5].

For n > 2 constructing orthogonal operations is less investigated. Here we consider only one of the constructing
methods of orthogonal operations, namely a generalization of the method of defining recursive derivative functions which
are connected with recursiveMDS codes via orthogonality as shown by E. Couselo and others in [4]. This idea was developed
by G.B. Belyavskaya, G.L. Mullen [3]. Their method is a special case of trivial recursive algorithmwhich is given here. By virtue
of trivial recursion, every next operation is constructed from a new operation and operations which have been constructed
previously.

In this article, we propose a block composition algorithm for constructing orthogonal operations (Theorem 8). It contains
two parts: composition algorithm for constructing operations with orthogonal retracts (Theorem 3) and block-wise recursive
algorithm for constructing multiary orthogonal operations using some partition of a variable set into blocks (Theorem 5). By
view of block recursion, the next block of operations is created from a block of new operations and operations which have
already been constructed. A special case of this algorithm was published in [7].

The concept of retract orthogonality can be considered as a generalization of invertibility of an operation. Block-
wise recursive algorithm becomes trivial when blocks of the partition are trivial, i.e., singletons (Corollary 6). Example 1
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demonstrates a construction of tuples of 4-ary orthogonal operations using a block-wise recursive algorithm. These tuples
cannot be constructed using a trivial recursive algorithm.

2. Preliminaries

In this article, all operations are defined on the same arbitrary set which we call a carrier and denote by Q . For notational
convenience xji denotes the sequence xi, xi+1, . . . , xj if i ≤ j or empty sequence otherwise.

An operation f is called i-invertible, if for arbitrary elements a1, . . . , ai−1, b, ai+1, . . . , an there exists a unique element x
such that

f (a1, . . . , ai−1, x, ai+1, . . . , an) = b.

If f is i-invertible for all i ∈ 1, n := {1, 2, . . . , n},1 then it is called an invertible or quasigroup operation. Operation f , being
the mapping Q n

→ Q , is called surjective, if for every b ∈ Q there exist a1, . . . , an ∈ Q n such that f (a1, . . . , an) = b.
For every permutation σ of the set 1, n + 1 and invertible operation f a σ -parastrophe σf is defined by

σf (x1σ , . . . , xnσ ) = x(n+1)σ :⇐⇒ f (x1, . . . , xn) = xn+1.

In particular, a σ -parastrophe is called

(1) an i-th division if σ = (i, n + 1);
(2) principal if (n + 1)σ = n + 1.

It is easy to see that a principal σ -parastrophe can be defined by

σf (x1σ , . . . , xnσ ) = f (x1, . . . , xn) (1)

or

σf (x1, . . . , xn) = f (x1σ−1 , . . . , xnσ−1 ). (2)

Throughout the article the symbol SA denotes the set of all permutations of the set A ⊂ 1, n, but Sn+1 refers to the set of all
permutations of the set 1, n + 1, where n is a natural number, and

S′

n+1 := {σ ∈ Sn+1 | (n + 1)σ = n + 1}.

It is obvious that S′

n+1 is a subgroup of the symmetric group Sn+1.
Usually, for τ ∈ Sn+1 the symbol (X)τ denotes the image of a set X under transformation τ , i.e., (X)τ := {xτ | x ∈ X}. Also

we need the following subset of Sn+1:

SAn+1 :=
{
τ ∈ S′

n+1 | (A)τ = {1, . . . , |A|}
}
.

A k-tuple of n-ary operations (f1, . . . , fk) defined on Q of the orderm is called orthogonal if every system{f1(x1, . . . , xn) = a1,
. . . . . . . . . . . . . . . . . .

fk(x1, . . . , xn) = ak,

where a1, . . . , ak ∈ Q , has exactly mn−k solutions. If k = n, then each of these systems has a unique solution.
The relationship

θ (x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn))
(
θ = (f1, . . . , fn)

)
defines a one-to-one correspondence between the set of all tuples of orthogonal operations defined on Q and the set of all
permutations of Q n.

If θ := (f1, . . . , fn) is a permutation of Q n and (g1, . . . , gn) := θ
−1

, then the equality θ
−1

θ = ι is equivalent to the
following system of identities:{g1(f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)) = x1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gn(f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)) = xn.

In every tuple of orthogonal operations, all operations are pairwise different and every two tuples differing only in the
order of operations are orthogonal simultaneously. That is why an arbitrary tuple of orthogonal operations from the set
{(f1σ , . . . , fnσ ) | σ ∈ Sn} will be denoted by {f1, . . . , fn}.

1 Symbol := denotes ‘‘is equal by definition’’ and :⇐⇒ denotes ‘‘is equivalent by definition’’.
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There exist different kinds of visual methods for constructing orthogonal binary operations, but it is problematic to
generalize them tomultiary operations, so analytical approaches are reasonable. One of them can be found in [3, Theorem3].
We present Belyavskaya and Mullen’s algorithm:

n-ary operations g1, . . . , gn are constructed using recursion of operations f1, . . . , fn as follows⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

g1(x1, . . . , xn) = f1(x1, . . . , xn),
g2(x1, . . . , xn) = f2(x1, . . . , xn−1, g1(x1, . . . , xn)),
g3(x1, . . . , xn) = f3(x1, . . . , xn−2, g1(x1, . . . , xn), g2(x1, . . . , xn)),
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gi(x1, . . . , xn) = f3(x1, . . . ,xn−i+1, g1(x1, . . . , xn), . . . ,gi−1(x1, . . . , xn)),
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gn(x1, . . . , xn) = fn(xn, g1(x1, . . . , xn), . . . , gn−1(x1, . . . , xn)).

(3)

3. Orthogonality of retracts

For orthogonality of n-ary operations, some problems which have no analogues in the binary case are left over without
attention. In this section we propose an answer to the following problem: Do tuples of operations, whose retracts are
orthogonal, exist?

Orthogonality and parastrophy.

Let f be an n-ary operation defined on a set Q and let

δ := {i1, . . . , ik} ⊆ 1, n, {j1, . . . , jn−k} := 1, n \ δ, ā := (aj1 , . . . , ajn−k ).

An operation f(ā,δ) which is defined by

f(ā,δ)(xi1 , . . . , xik ) := f (y1, . . . , yn),

where yi :=

{
xi, if i ∈ δ,

ai, if i ̸∈ δ
, is called (ā, δ)-retract or δ-retract of f .

Operations f1;(ā1,δ), f2;(ā2,δ), . . . , fk;(āk,δ) are called similar δ-retracts of n-ary operations f1, f2, . . . , fk, if ā1 = ā2 = · · · = āk.
If all similar δ-retracts of f1, f2, . . . , fk are orthogonal, then the operations f1, f2, . . . , fk are said to have orthogonal δ-retracts.

If δ = 1, n, then δ-retract orthogonality is orthogonality given above. When δ = {i}, then δ-retract orthogonality
degenerates into i-invertibility of operation fi, i.e., retract orthogonality can be considered as some generalization of
invertibility.

Let f1, . . . , fk be operations with orthogonal δ-retracts. By view of the definition, it means that for every ā ∈ Q n−k their
(ā, δ)-retracts f1;(ā,δ), . . . , fk;(ā,δ) are orthogonal. In other words, a transformation

θ := (f1;(ā,δ), . . . , fk;(ā,δ))

of the set Q k is its permutation. Let (g1, . . . , gk) := θ
−1

, then the equality θ
−1

θ = ι can be written as follows{g1(f1(y1, . . . , yn), . . . , fk(y1, . . . , yn)) = xi1 ,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gk(f1(y1, . . . , yn), . . . , fk(y1, . . . , yn)) = xik ,
(4)

where yi :=

{
xi, if i ∈ δ,

ai, if i ̸∈ δ.

Note that the set of all x’s indices in (4) is δ.
Thus the following statement is true:

Lemma 1. δ-retract orthogonality of n-ary operations f1, . . . , fk means that for every ā ∈ Q n−k there exist k-ary operations
g1, . . . , gk such that the system of identities (4) holds.

To show dependences among orthogonalities of retracts we introduce a new notation. Let δ := {i1, . . . , ik}, σ ∈ S′

n+1 then

σδ := {(i1)σ−1, . . . , (ik)σ−1
}. (5)

Lemma 2. Let σ ∈ S′

n+1 and f1, . . . , fk be n-ary operations. A tuple {f1, . . . , fk} has orthogonal δ-retracts if and only if the tuple
{
σf1, . . . , σfk} has orthogonal σδ-retracts.

Proof. Let δ := {i1, . . . , ik}. According to Lemma 1 and equality (1) the system (4) can be written as follows:{g1(σf1(y1σ , . . . , ynσ ), . . . ,σfk(y1σ , . . . , ynσ )) = xi1 ,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gk(σf1(y1σ , . . . , ynσ ), . . . ,σfk(y1σ , . . . , ynσ )) = xik .
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Here the variable xi1 is in i1σ−1-th place and so on, xik is in ikσ−1-th place. By (5) we conclude that the collection {
σf1, . . . ,σfk}

has orthogonal σδ-retracts. □

This Lemma implies that it is enough to consider the case δ = {1, . . . , k}.
Lemma 2 implies p.3 of Proposition 2.2 from [9] when δ = {1, . . . , n}.

Constructing operations with orthogonal retracts .

Operations with orthogonal retracts can be constructed using repetition-free composition.

Theorem 3. Let p1, . . . , pk be arbitrary 1-invertible (n− k+ 1)-ary operations, h1, . . . , hk be arbitrary k-ary operations, and let
operations f1, . . . , fk be defined by{f1(x1, . . . , xn) := p1(h1(x1, . . . , xk), xk+1, . . . , xn),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fk(x1, . . . , xn) := pk(hk(x1, . . . , xk), xk+1, . . . , xn).
(6)

Then n-ary operations f1, . . . , fk have orthogonal 1, k-retracts if and only if k-ary operations h1, . . . , hk are orthogonal.

Proof. In (6) we put ak+1 ∈ Q instead of xk+1 and so on, an ∈ Q instead of xn. We consider for any b1, . . . , bn ∈ Q the
corresponding system. From 1-invertibility of p1, . . . , pk the system⎧⎨⎩h1(x1, . . . , xk) =

ℓp1(b1, ak+1, . . . , an),
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hk(x1, . . . , xk) =
ℓpk(bk, ak+1, . . . , an)

is obtained. Because the operations p1, . . . , pk are surjective, the last statement is equivalent to orthogonality of the
operations h1, . . . , hk. □

For arbitrary δ, a tuple of orthogonal δ-retracts of n-ary operations can be constructed using the algorithm given below.
Composition algorithm. Let δ ⊆ 1, n, n ⩾ k and let h1, . . . , hk be k-ary operations, p1, . . . , pk be (n− k+1)-ary operations,

σ ∈ S′

n+1.
Operations σf1, . . . , σfk are constructed by the following items:

(1) operations f1, . . . , fk are constructed by (6);
(2) operations σf1, . . . , σfk are obtained from f1, . . . , fk using (2).

Lemma 2 and Theorem 3 imply the following statement:

Theorem 4. Let p1, . . . , pk be 1-invertible (n−k+1)-ary operations and h1, . . . , hk be k-ary orthogonal operations, σ−1
∈ Sδ

n+1.
Then operations σf1, . . . , σfn being constructed by composition algorithm have orthogonal δ-retracts.

Proof. According to Theorem 3, the operations f1, . . . , fk have orthogonal 1, k-retracts. By virtue of Lemma 2, the operations
σf1, . . . , σfk have orthogonal σ1, k-retracts. But σ−1

∈ Sδ
n+1, i.e.,

σ−1
δ = 1, k, wherefrom σ1, k = δ. □

4. Block-wise recursive algorithm

The purpose of this section is to describe an algorithm for constructing an orthogonal tuple of n-ary operations from
blocks of n-ary operations with orthogonal retracts. ‘‘Recursive’’ means that every next block of operations is constructed
from all operations which have been constructed before.

Let n be an arbitrary natural number, n ⩾ 2. Denote classes of a partition π of the set 1, n as follows

π = {π1, π2 . . . , πk}.

Let f1, . . . , fn be n-ary operations on Q . We distribute these operations according to partition π of their indices:

{fj | j ∈ πi}, i = 1, 2, . . . , k.

π-block-wise recursive algorithm. Let π := {π1, . . . , πk} be a partition of 1, n and f1, . . . , fn be n-ary operations, τ1 ∈ Sπ1 ,
τ2 ∈ Sπ1∪π2 , . . . , τk−1 ∈ Sπ1∪···∪πk−1 .

Operations g1, . . . , gn are constructed by the following items

(1) the first block of operations is

gj(x1, . . . , xn) := fj(x1, . . . , xn), j ∈ π1;
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(2) for every i = 2, . . . , k the i-th block of operations is

gj(x1, . . . , xn) := fj(t1, . . . , tn), j ∈ πi,

where

ts :=

{
gsτi−1 (x1, . . . , xn), if s ∈ π1 ∪ · · · ∪ πi−1,

xs otherwise.

A tuple of operations f1, . . . , fn will be called π-block retract orthogonal if for all i ∈ 1, k a tuple {fj | j ∈ πi} has orthogonal
πi-retracts.

Theorem 5. Let operations f1, . . . , fn be π-block retract orthogonal. Then the operations g1, . . . , gn constructed by π-block-wise
recursive algorithm are orthogonal.

Proof. To prove the statement of the theorem we use induction on the number k of blocks of the partition π .
The basis. If k = 1, then π = {π1} = {1, n}. Thus, the operations f1, . . . , fn are contained in one block, they are orthogonal

according to the condition of the theorem. Consequently, for k = 1 the statement is true.
The inductive hypothesis. Suppose the statement of the theorem is true for k = m. It means that the partition hasm blocks,

and a tuple of operations being constructed by the block-wise recursive algorithm is orthogonal.
The inductive step. Consider the statement for k = m+1, i.e., the partition π hasm+1 blocks; we have to prove that every

arbitrary tuple of n-ary operations g1, . . . , gn being constructed by some π-block-wise recursive algorithm is orthogonal. In
other words, we have to prove that for all b1, . . . , bn ∈ Q the system{

gj(x1, . . . , xn) = bj, j ∈ 1, n (7)

has a unique solution.
For k = m + 1 the π-block-wise recursive algorithm for g1, . . . , gn has such parameters:

– π = {π1, . . . , πm, πm+1};

– f1, . . . , fn are π-block retract orthogonal operations, i.e., for every i ∈ 1,m + 1 the tuple {fj | j ∈ πi} has orthogonal
πi-retracts;

– τ1 ∈ Sπ1 , τ2 ∈ Sπ1∪π2 , . . . , τm ∈ Sπ1∪···∪πm .

For brevity, we provide the notation

π ′
:= {π1, . . . , πm} = π \ {πm+1}, π0 := π1 ∪ · · · ∪ πm = 1, n \ πm+1.

Let us consider a subsystem of (7)

{gj(x1, . . . , xn) = bj, j ∈ πm+1. (8)

Using the algorithm, we obtain⎧⎨⎩
fj(t1, . . . , tn) = bj, j ∈ πm+1,

ts :=

{
gsτm (x1, . . . , xn), if s ∈ π0,

xs otherwise.

In this system, we replace all subterms gsτ (x1, . . . , xn), s ∈ π0 with their values taken from (7):

{fj(t1, . . . , tn) = bj, j ∈ πm+1, (9)

where

ts :=

{
bsτm , if s ∈ π0,

xs otherwise.

Since τm is a permutation of π0, (9) implies that the set of all x’s indices is equal to

1, n \ π0 = πm+1,

because π is a partition of 1, n. Then all left sides of equations from (9) are πm+1-retracts of operations fj , j ∈ πm+1. Since the
operations f1, . . . , fn are π-block retract orthogonal, then their πm+1-retracts are orthogonal. Thus, (9) has a unique solution:

xs := as, s ∈ πm+1. (10)

We substitute (10) in the other equations of (7), i.e., in all equations of (7) except Eqs. (8)

{gj(y1, . . . , yn) = bj, j ∈ π0, (11)
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where

ys :=

{
xs, if s ∈ π0,

as otherwise.

In the left side, we obtain π0-retracts of operations gj, j ∈ π0, and we follow the notation: {s1, . . . , sℓ} := π0,

f ′

j (xs1 , . . . , xsℓ ) := fj(y1, . . . , yn),
g ′

j (xs1 , . . . , xsℓ ) := gj(y1, . . . , yn)
(12)

for all j ∈ π0, where

ys :=

{
xs, if s ∈ π0,

as otherwise.

The induction hypothesis implies that the system (11) has a unique solution. To use this the following facts are to be
proved:

1◦. The operations f ′

j , j ∈ π0 are π ′-block retract orthogonal;
2◦. The operations g ′

j , j ∈ π0 are constructible by a π ′-block-wise recursive algorithm.

Proof of 1◦. Assumption of the theorem implies that for arbitrary i = 1, . . . ,m a block of operations fj, j ∈ πi has orthogonal
πi-retracts. This means that all similar πi-retracts of operations fj, j ∈ πi are orthogonal. Since operations f ′

j , j ∈ πi are π0-
retracts of fj, j ∈ πi, then the set of all tuples of similar πi-retracts of operations f ′

j , j ∈ πi is a subset of the set of all tuples
of similar πi-retracts of operations fj, j ∈ πi. But if every tuple of the last set is orthogonal, then every tuple of the previous
set is also orthogonal. Consequently, the operations f ′

j , j ∈ πi have orthogonal πi-retracts. Because i is arbitrary, then the
operations f ′

j , j ∈ π0 are π ′-block retract orthogonal, i.e., 1◦ has been proved.
Proof of 2◦. Applying (10) and (12) to the firstm blocks of the algorithm for k = m + 1, we obtain

(1) the first block of operations g ′

j (xs1 , . . . , xsℓ ) = f ′

j (xs1 , . . . , xsℓ ), j ∈ π1;
(2) for every i = 2, . . . ,m the i-th block of operations

g ′

j (xs1 , . . . , xsℓ ) = f ′

j (ts1 , . . . , tsℓ ), j ∈ πi,

where

ts :=

{
g ′

sτi−1
(xs1 , . . . , xsℓ ), if s ∈ π1 ∪ · · · ∪ πi−1,

xs otherwise.

According to the definition of block-wise recursive algorithm, this algorithm constructs g ′

j , j ∈ π0 from f ′

j , j ∈ π0, i.e., 2◦

holds.
By the induction hypothesis, we conclude that (11) has a unique solution:

xs := as, s ∈ π0. (13)

Combining (10) and (13) we conclude that (a1, . . . , an) is a solution of (7). This means that the operations g1, . . . , gn are
orthogonal.

Thus, the statement of the theorem is true for all natural k, i.e., for an arbitrary number of blocks of partition π . □

Trivial recursive algorithms.

An algorithm is called trivial recursive algorithm if π is trivial, i.e., every block of partition π is a singleton.
Since blocks of operations are singletons, then every block contains only one operation. Retract orthogonality of an

operation is its i-invertibility.
Let π := {{i1}, . . . , {in}} be a partition of 1, n and f1, . . . , fn be n-ary operations, τ1 ∈ S{i1}, τ2 ∈ S{i1,i2}, . . . , τn−1 ∈

S{i1,...,in−1}.
Operations g1, . . . , gn are constructed by the following items

(1) the first operation is

gi1 (x1, . . . , xn) := fi1 (x1, . . . , xn);

(2) for every j ∈ {i2, . . . , in} the j-th operation is

gj(x1, . . . , xn) := fj(t1, . . . , tn),

where

ts :=

{
gsτj−1 (x1, . . . , xn), if s ∈ {i1, . . . , is−1},

xs otherwise.
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Corollary 6. Let operations f1, . . . , fn be i1-, . . . , in-invertible. Then the operations g1, . . . , gn constructed by trivial recursive
algorithm are orthogonal.

If i1 = n, i2 = n − 1, . . . , in = 1 and τ1, τ2, . . . , τn−1 are trivial transformations, then we obtain the algorithm (3).

Corollary 7 ([3]). Let fi be (n − i + 1)-invertible n-ary operations for all i ∈ 1, n. Then the operations g1, . . . , gn constructed by
(3) are orthogonal.

The simple example given below shows existence of tuples of orthogonal operations which are constructible by block-
wise recursive algorithm and non-constructible by trivial recursive algorithm.

Example 1. Consider the quadruple of operations

f1(x, y, z, t) = 3x + 2y + 3z + 4t,
f2(x, y, z, t) = 2x + 3y + 3z + 2t,
f3(x, y, z, t) = 4x + 2y + 3z + 2t,
f4(x, y, z, t) = 2x + 2y + 2z + 3t

on Z6. Since f1, f2 have orthogonal {1, 2}-retracts, f3, f4 have orthogonal {3, 4}-retracts, then π =
{
{1, 2}, {3, 4}

}
. There

are two variants for choosing τ1, because τ1 is a permutation of the set {1, 2}: τ1 = ι and τ1 = (12), where ι is
identity permutation. For each of these variants, we construct quadruple of orthogonal operations by a block-wise recursive
algorithm.

Let τ1 = ι, then π-block-wise recursive algorithm is

g1(x, y, z, t) = 3x + 2y + 3z + 4t,
g2(x, y, z, t) = 2x + 3y + 3z + 2t,
g3(x, y, z, t) = 4(3x + 2y + 3z + 4t) + 2(2x + 3y + 3z + 2t) + 3z + 2t,
g4(x, y, z, t) = 2(3x + 2y + 3z + 4t) + 2(2x + 3y + 3z + 2t) + 2z + 3t,

i.e.,

g1(x, y, z, t) = 3x + 2y + 3z + 4t,
g2(x, y, z, t) = 2x + 3y + 3z + 2t,
g3(x, y, z, t) = 4x + 2y + 3z + 4t,
g4(x, y, z, t) = 4x + 4y + 2z + 3t.

And let τ1 = (12) then π-block-wise recursive algorithm is

g ′

1(x, y, z, t) = 3x + 2y + 3z + 4t,
g ′

2(x, y, z, t) = 2x + 3y + 3z + 2t,
g ′

3(x, y, z, t) = 4(2x + 3y + 3z + 2t) + 2(3x + 2y + 3z + 4t) + 3z + 2t,
g ′

4(x, y, z, t) = 2(2x + 3y + 3z + 2t) + 2(3x + 2y + 3z + 4t) + 2z + 3t,

i.e.,

g ′

1(x, y, z, t) = 3x + 2y + 3z + 4t,
g ′

2(x, y, z, t) = 2x + 3y + 3z + 2t,
g ′

3(x, y, z, t) = 2x + 4y + 3z + 0t,
g ′

4(x, y, z, t) = 4x + 4y + 2z + 3t.

Trivial recursive algorithm requires that at least one of the constructed operations must be i-invertible for some i ∈

{1, 2, 3, 4}. Each of the constructed quadruples cannot be constructed by trivial recursive algorithm, because any of the
operations from tuples g1, g2, g3, g4 and g ′

1, g
′

2, g
′

3, g
′

4 is not i-invertible for all i ∈ {1, 2, 3, 4}.

5. Block composition algorithm

In this section, we give an algorithm for constructing orthogonal n-ary operations from operations which are distributed
into k blocks. For all i ∈ 1, k, every ith block contains ni-tuple of ni-ary orthogonal operations and n1 + n2 + · · · + nk = n.
This algorithm is a composition of the algorithms given above, namely a composition algorithm and a block-wise recursive
algorithm.

Now we describe this algorithm in detail.
π-block composition algorithm. Let π = {π1, . . . , πk}be a partition of the set 1, n and let for all i = 1, . . . , k, the following

conditions

– hj, j ∈ πi be |πi|-ary operations,
– pj, j ∈ πi be (n − |πi| + 1)-ary operations,
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– σi ∈ Sπi
n+1,

– τi−1 ∈ Sπ1∪···∪πi−1 , i > 1

hold.
Operations g1, . . . , gn are constructed by the following items

(1) operations fj are constructed by (6) for all j ∈ πi, i = 1, . . . , k:

fj(x1, . . . , xn) := pj
(
hj(x1, . . . , x|πi|), x|πi|+1, . . . , xn

)
;

(2) parastrophes σifj, j ∈ πi are formed from operations fj, i = 1, . . . , k;
(3) operations g1, . . . , gn are constructed by block-wise recursive algorithm:

(a) the first block of operations is

gj(x1, . . . , xn):=σ1fj(x1, . . . , xn), j ∈ π1,

(b) for every i = 2, . . . , k, the i-th block of operations is

gj(x1, . . . , xn):=σifj(t1, . . . , tn), j ∈ πi,

where

ts :=

{
gsτi−1 (x1, . . . , xn), if s ∈ π1 ∪ · · · ∪ πi−1,

xs otherwise.

Theorem 8. Let π = {π1, . . . , πk} be a partition of 1, n and for all i = 1, . . . , k, the following conditions
– hj, j ∈ πi be |πi|-ary orthogonal operations,
– pj, j ∈ πi be 1-invertible (n − |πi| + 1)-ary operations

hold. Then n-ary operations g1, . . . , gn constructed by block composition algorithm are orthogonal.

Proof. Let conditions of the theorem be satisfied. Consider the proof according to the items of block composition algorithm.
1. By virtue of Theorem 3, operations fj, j ∈ πi have orthogonal {1, . . . , |πi|}-retracts for all i ∈ 1, k.
2. Since {1, . . . , |πi|}σ

−1
i = πi, then the operations σifj, j ∈ πi have orthogonal πi-retracts by Lemma 2 for all i ∈ 1, k.

3. Since for all i = 1, . . . , k, the operations σifj, j ∈ πi have orthogonal πi-retracts, we can apply block-wise recursive
algorithm to them. According to Theorem 5, the operations g1, . . . , gn are orthogonal. □

Remark 1. If block πi is a singleton, then it consists of j. Hence pj is 1-invertible n-ary operation and hj is a unary quasigroup,
i.e., a permutation of the carrier. Thus operation fj defined by

fj(x1, . . . , xn) := pj(hj(x1), x2, . . . , xn)

is isotopic to pj. The parameter σi is a cycle (1, j).

Each of the algorithms describes a series of algorithms. Generally speaking even for trivial classes of operations, every
choice of parameters of the algorithm gives different tuples of orthogonal operations which are not necessarily parastrophic.
We consider this in the following example.

Tuple of operations σf1, . . . , σfn is called σ -parastrophic to tuple f1, . . . , fn, σ ∈ Sn+1.

Example 2. Let π =
{
{1, 2}, {3, 4}

}
, Z6 be a carrier and the pairs of operations h1, h2 and h3, h4, which are defined by

h1(x1, x2) = 3x1 + 2x2, h3(x1, x2) = 3x1 + 2x2,
h2(x1, x2) = 2x1 + 3x2, h4(x1, x2) = 2x1 + 3x2,

be orthogonal, the operations

p1(u, x3, x4) = u + 2x3 + 2x4,
p2(u, x3, x4) = u + 3x3 + 4x4,
p3(u, x3, x4) = u + 4x3 + 2x4,
p4(u, x3, x4) = u + 2x3 + 2x4

be 1-invertible, σ1 ∈ S{1,2}
5 , σ2 ∈ S{3,4}

5 , where

S{1,2}
5 = {ι, (12), (34), (12)(34)},

S{3,4}
5 = {(13)(24), (14)(23), (1324), (1423)},

and τ1 ∈ S{1,2}, where S{1,2} =
{
ι, (12)

}
.

Let us construct orthogonal operations by a block composition algorithm.
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By p.1 from the given operations, we construct operations with orthogonal retracts:

B1 :

{
f1(x1, x2, x3, x4) := p1(h1(x1, x2), x3, x4) = 3x1 + 2x2 + 2x3 + 2x4,
f2(x1, x2, x3, x4) := p2(h2(x1, x2), x3, x4) = 2x1 + 3x2 + 3x3 + 4x4,

B2 :

{
f3(x1, x2, x3, x4) := p3(h3(x1, x2), x3, x4) = 3x1 + 2x2 + 4x3 + 2x4,
f4(x1, x2, x3, x4) := p4(h4(x1, x2), x3, x4) = 2x1 + 3x2 + 2x3 + 2x4.

By p.2, we apply permutations σ1, σ2 to the corresponding blocks of operations. There exist sixteen different cases. To show
dependence among different tuples, we consider two of them. For example, if σ1 = ι, σ2 = (13)(24) and if σ1 = (12),
σ2 = (23)(14).

If σ1 = ι, σ2 = (13)(24), then

B1 :

{
σ1f1(x1, x2, x3, x4) = 3x1 + 2x2 + 2x3 + 2x4,
σ1f2(x1, x2, x3, x4) = 2x1 + 3x2 + 3x3 + 4x4,

B2 :

{
σ2f3(x1, x2, x3, x4) = 4x1 + 2x2 + 3x3 + 2x4,
σ2f4(x1, x2, x3, x4) = 2x1 + 2x2 + 2x3 + 3x4.

If σ1 = (12), σ2 = (23)(14), then

B1 :

{
σ1f1(x1, x2, x3, x4) = 2x1 + 3x2 + 2x3 + 2x4,
σ1f2(x1, x2, x3, x4) = 3x1 + 2x2 + 3x3 + 4x4,

B2 :

{
σ2f3(x1, x2, x3, x4) = 2x1 + 4x2 + 2x3 + 3x4,
σ2f4(x1, x2, x3, x4) = 2x1 + 2x2 + 3x3 + 2x4.

By p.3, we apply block-wise recursive algorithm when τ1 = ι.
If σ1 = ι, σ2 = (13)(24), τ1 = ι, then

B1 :

{
g1(x1, x2, x3, x4) = 3x1 + 2x2 + 2x3 + 2x4,
g2(x1, x2, x3, x4) = 2x1 + 3x2 + 3x3 + 4x4,

B2 :

{
g3(x1, x2, x3, x4) = 4x1 + 2x2 + 5x3 + 0x4,
g4(x1, x2, x3, x4) = 4x1 + 4x2 + 0x3 + 3x4.

If σ1 = (12), σ2 = (23)(14), τ1 = ι, then

B1 :

{
g1(x1, x2, x3, x4) = 2x1 + 3x2 + 2x3 + 2x4,
g2(x1, x2, x3, x4) = 3x1 + 2x2 + 3x3 + 4x4,

B2 :

{
g3(x1, x2, x3, x4) = 4x1 + 2x2 + 0x3 + 5x4,
g4(x1, x2, x3, x4) = 4x1 + 4x2 + x3 + 2x4.

The constructed tuples of orthogonal operations are different and by definition they are not parastrophic. There are thirty-
two possible tuples, i.e.,

|S{1,2}
5 | · |S{3,4}

5 | · |S{1,2}| = 32.

The block composition algorithm is convenient for implementation. The following example illustrates the construction
by the block composition algorithm.

Example 3. Let π =
{
{2}, {1, 3, 4}

}
, Z15 be a carrier and the operations

p1(x1, x2, x3, x4) = x1 + 4x2 + 2x3 + x4,
p2(x3, x4) = x3 + 5x4,
p3(x3, x4) = 4x3 + x4,
p4(x3, x4) = x3 + 11x4

be 1-invertible, the operation h1(x1) = 7x be a permutation, the operations

h2(x1, x2, x3) = 3x1 + 2x2 + 6x3,
h3(x1, x2, x3) = 2x1 + 3x2 + 3x3,
h4(x1, x2, x3) = 2x1 + x2 + 2x3

be orthogonal, σ1 = (12), σ2 = (24), τ1 = ι.
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We construct orthogonal operations from the given operations for partition π by the block composition algorithm.
By p.1 according to (6), we construct operations f1, f2, f3, f4:

B1 :
{
f1(x1, x2, x3, x4) := p1(h1(x1), x2, x3, x4) = 7x1 + 4x2 + 2x3 + x4,

B2 :

{f2(x1, x2, x3, x4) := p2(h2(x1, x2, x3), x4) = 3x1 + 2x2 + 6x3 + 5x4,
f3(x1, x2, x3, x4) := p3(h3(x1, x2, x3), x4) = 8x1 + 12x2 + 12x3 + x4,
f4(x1, x2, x3, x4) := p4(h4(x1, x2, x3), x4) = 2x1 + x2 + 2x3 + 11x4.

By p.2, we apply permutation σ1 to the first block:
σ1f1(x1, x2, x3, x4) = 4x1 + 7x2 + 2x3 + x4

and σ2 to the second block:
σ2f2(x1, x2, x3, x4) = 3x1 + 5x2 + 6x3 + 2x4,
σ2f3(x1, x2, x3, x4) = 8x1 + x2 + 12x3 + 12x4,
σ2f4(x1, x2, x3, x4) = 2x1 + 11x2 + 2x3 + x4.

By virtue of Lemma 2, the operation σ1f2 is 2-invertible, σ2f2, σ2f3, σ2f4 have orthogonal {1, 3, 4}-retracts.
By p.3, we write orthogonal operations g1, g2, g3, g4 for the given partition π :

g1(x1, x2, x3, x4) = 7x1 + 4x2 + 2x3 + x4,
g2(x1, x2, x3, x4) = 3x1 + 5(7x1 + 4x2 + 2x3 + x4) + 6x3 + 2x4,
g3(x1, x2, x3, x4) = 8x1 + (7x1 + 4x2 + 2x3 + x4) + 12x3 + 12x4,
g4(x1, x2, x3, x4) = 2x1 + 11(7x1 + 4x2 + 2x3 + x4) + 2x3 + x4,

i.e.,

g1(x1, x2, x3, x4) = 7x1 + 4x2 + 2x3 + x4,
g2(x1, x2, x3, x4) = 8x1 + 5x2 + x3 + 7x4,
g3(x1, x2, x3, x4) = 0x1 + 4x2 + 14x3 + 13x4,
g4(x1, x2, x3, x4) = 4x1 + 14x2 + 9x3 + 12x4.

According to the block composition algorithm, the operations g1, g2, g3, g4 are orthogonal.

Remark 2. Article [1] implies that any subtuple of operations from tuple of orthogonal operations is orthogonal. In [3] it is
proved that any k-tuple of orthogonal n-ary operations can be embedded into some orthogonal n-tuple of n-ary operations.
Therefore without recourse to detailed proof, we claim that the block-wise recursive algorithm gives possibility to construct
ℓ-tuple of orthogonal n-ary operations, ℓ ⩽ n.

Conclusions. A partition of the set 1, n is one of the parameters of block-wise recursive algorithm for constructing
orthogonal n-ary operations. The algorithm is called trivial if the partition is trivial and non-trivial otherwise. A tuple of
orthogonal operations being constructible only bynon-trivial block-wise recursive algorithm is exemplified. But the obtained
algorithm should be further investigated. For example, the following questions should be answered:

1. What part of tuples of orthogonal n-ary operations is constructible by the algorithm?
2. Under what conditions does the algorithm construct a) different tuples of operations; b) a tuple of quasigroups; c) a

strong orthogonal tuple of quasigroups and etc.?
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